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are favored over their explicit counterparts for some prob-
lems, in which the time-step size necessary for procuringIterative implementation of an implicit—explicit hybrid scheme

for solving the Euler equations is described in this paper. The a required temporal accuracy may be significantly larger
scheme was proposed by Fryxell et al. (J. Comput. Phys. 63, 283 than that dictated by the explicit stability condition. Im-
(1986)), is of the Godunov-type in both explicit and implicit regimes, plicit–explicit hybrid schemes are useful when a flow at-is conservative, and is accurate to second order in both space and

tains different wave speeds either in different regions ortime for all Courant numbers. Only a single level of iterations is
at different instants, and the time accuracy is important ininvolved in the implementation, which solves both the implicit rela-

tions arising from upstream centered differences for all wave fami- some parts of simulation domains.
lies and the nonlinearity of the Euler equations. The number of Implicit and implicit–explicit hybrid schemes for hydro-
iterations required to reach a converged solution may be signifi-

dynamical equations have been developed for many years.cantly reduced by the introduction of the multicolors proposed in
Schemes with a smooth switch for advection have been inthis paper. Only a small number of iterations are needed in the

scheme for a simulation with large time steps. The multicolors may use for many years (for example, see [8, 9]). Beam and
also be applied to other linear and nonlinear wave equations for Warming [10] proposed an implicit scheme for hyperbolic
numerical solutions. Q 1996 Academic Press, Inc. systems of conservation laws. Engquist and Osher [11]

proposed a method for transonic flows. Van Leer and
Mulder [12] developed a scheme which is time-accurate

1. INTRODUCTION
for small time steps and turns into a relaxation method
for large time steps. Yee et al. [13] proposed an implicitDuring the last 20 years, Godunov schemes for hydrody-
TVD scheme for steady states. Glaz and Wardlaw [14]namics have been developed, which have been particularly
proposed a high-order Godunov scheme for steady super-efficient for shock problems. Godunov [1] supposed that
sonic gas dynamics. Fryxell et al. [15] developed a methodthe initial data could be replaced by a set of piecewise
which extends Godunov schemes to the implicit regime.constant data with discontinuities and used exact solutions
Jameson and Yoon [16, 17] proposed an implicit schemeof Riemann problems to advance the piecewise constant
which is combined with the multigrid method. More re-data. A major extension to the Godunov’s scheme was
cently, Loh and Hui [18] developed a first-order Godunovmade by Van Leer in his MUSCL scheme [2, 3] which
scheme for steady supersonic flows; Blunt and Rubin [19]used a Riemann solver to advance piecewise linear data.
extended a TVD scheme to fully implicit and partiallyOther examples of Godunov schemes include Roe’s
implicit regimes; Wilcoxson and Manousiouthankis [20]method [4], the piecewise parabolic method (PPM) [5, 6],
developed implicit time marching implementation of thethe TVD method [7]. One of the key points in Godunov
essentially nonoscillatory scheme.schemes is to calculate the flux at each interface of numeri-

A typical approach in implicit schemes is linearizationcal cells through a Riemann problem.
which results in a linear system. The linear system is thenGodunov schemes for hydrodynamical equations may
exactly or approximately solved. The Newton iteration isbe second-order accurate in time, but they are explicit.
often used in implicit schemes. But, the Newton iterationThe time step in an explicit scheme is restricted by the
in an implicit scheme is very time-consuming. An exactlargest Courant number, which cannot be larger than unity
linear solver in an implicit scheme is difficult to vectorizefor a stable calculation. The stability limit in an explicit
and needs large memory. Therefore, iterative linear solversscheme is imposed by the local conditions in the regions,
are often used for the linear system. But an iterative ap-where wave speeds are high, regardless of the significance
proach often needs a large number of iterations. The workof spatial variations prevailing in the problems. The regions
to be presented here is based on the framework reporteddrastically reduce the time step possible from explicit

schemes. Implicit schemes for hydrodynamical equations in [15]. In this paper, we propose an iterative approach. The
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FIG. 1. The structure of a cell in space–time for two kinds of situa-
tions, one with the Courant number less than unity (a) and the other
with the number greater than unity (b). In the first case, the time-average
of a(x, t) over the time step Dt at xi11 is equal to the cell-average of a
over the domain [xi11 2 cDt, xi11] at t 5 0. In the other case, an extra
time level at t 5 Dt/2 is introduced, and two characteristic curves passing
through (xi11 , Dt/2) or (xi11 , Dt) are traced back to the center x(m)

i of
FIG. 3. The convergence when 200 numerical cells and a time stepthe cell.

0.2 are used. Courant numbers are around 40. The wave travels about
one-fifth of its wavelength during the time step. The dotted lines indicated
by k 5 1 results from the approach A1 , the solid lines are obtained from

iterative approach involves only a single level of iterations, the approach Ak for k 5 2, 6, 10, 20, 50, and 100, and the dashed line
comes from the approach AN . The initial condition and the wave afterwhich solve both the implicit relations arising from up-
it travels one time step are shown in Fig. 8.stream centered differences for all wave families and the

nonlinearity of the Euler equations. Only a small number
of iterations are needed in the scheme for a simulation
with large time steps. This paper deals with only the one- 2. A LINEAR ADVECTION SCHEME
dimensional situation, and is the first step to develop a
hybrid scheme for the multi-dimensional Euler equations. We first illustrate the iterative implementation for lin-

The plan of this paper is as follows. The second section ear advection
is an illustration of the iterative implementation through
linear advection. The iterative implementation of the a

t
1 c

a
x

5 0, (1)scheme for the Euler equations is in the third section. The
numerical examples are in the forth section, and the final
section is for the conclusions and a brief discussion.

where x and t are the space and time coordinates, a is the
quantity being advected, and c is a constant advection

FIG. 2. An illustration for the calculation of the interface values
at x 5 xi11 in the case with Courant numbers larger than unity. Two
characteristic curves pass through the point (xi11 , Dt/2), and other two
pass through the point (xi11 , Dt). x(m)

i and x(m)
i11 are the centers of the two

cells near the interface. The interface values at xi11 and at t 5 Dt/2 and FIG. 4. The convergence when 2000 numerical cells and a time step
0.2 are used. Courant numbers are around 400. The wave travels aboutDt may be obtained through two Riemann problems, and may be written

in terms of cell-averages. A cell-average of any variable at t [ [0, Dt] one-fifth of its wavelength during the time step. The solid lines are ob-
tained from the approach Ak for k 5 6, 10, 20, 40, 80, 200, and 500, andmay be obtained through parabolic interpolation in time, and a parabola

is uniquely determined by cell-averages at t 5 0, Dt/2 and Dt. the dashed line comes from the approach AN .
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Dt/2)) and a(n)
i (;a(xi , Dt)). Thus, Eqs. (2), (3) may be

written as

ã(n)
i 5 ai 2 si(a(h)

i11 2 a(h)
i ), (4)

ã(h)
i 5 ai 2 Assi[Dsa(h)

i11 2 Asa(n)
i11 2 (Dsa(h)

i 2 Asa(n)
i )]. (5)

In order to find a(n)
i11 and a(h)

i11 , two characteristic curves
passing through (xi11 , Dt) or (xi11 , Dt/2) in the (x 2 t)-
space are traced back to the center of the cell, x(m)

i ;
(xi11 1 xi)/2 (see Fig. 1b). a(n)

i11 and a(h)
i11 are equal toFIG. 5. An illustration for the calculation of a conserved quantity a

a(x(m)
i , t (h)

i Dt) and a(x(m)
i , ti Dt), respectively. Here t (h)

iin a part [s0 , s1] of a cell [x(l)
j , x(l)

j11].
and ti are defined as

t (h)
i ; 1 2

1
2si

, ti ; 1
2 S1 2

1
si
D. (6)

velocity. Considering a numerical cell [xi , xi11], we write
Eq. (1) in a difference form:

Up to second order of accuracy, a(x(m)
i , t (h)

i Dt) and
a(x(m)

i , ti Dt) are the cell-averages of a over the cell [xi ,ã(n)
i 5 ai 2

cDt
Dxi

(ai11 2 ai). (2) xi11] at t 5 t (h)
i Dt and t 5 ti Dt, respectively, which may

be approximately calculated through a parabolic interpola-
tion for the cell-average ãi(t) in the time. The parabola isHere Dxi is the width of the cell, Dt is the time step, ã(n)

i
uniquely determined by three cell-averages, ai , ã(h)

i , and(or ai) is the cell-average of a over the cell at t 5 Dt (or
ã(n)

i . Therefore a(n)
i11 and a(h)

i11 may be written ast 5 0), and ai is the time-average of a at xi over the time
step, i.e.,

a(n)
i11 5 ai 1 (2da(n)

i 1 4da(h)
i )t (h)

i

1 (2da(n)
i 2 4da(h)

i )(t (h)
i )2, (7)ã(n)

i ; 1
Dxi

Exi11

xi

a(x, Dt) dx,

a(h)
i11 5 ai 1 (2da(n)

i 1 4da(h)
i )ti 1 (2da(n)

i 2 4da(h)
i )t 2

i .
ai ; 1

Dt
EDt

0
a(xi , t) dt.

(8)

For the case in which the Courant number si (;cDt/ Here da(n)
i and da(h)

i are defined as
Dxi) is less than unity (Fig. 1a), the time-average ai11 is
equal to the domain-average of a over the domain of de- da(n)

i ; ã(n)
i 2 ai ,pendence [xi11 2 cDt, xi11], and the scheme is uncondition-

da(h)
i ; ã(h)

i 2 ai .ally stable.
For the case in which the Courant number is greater

than unity, the domain of dependence extends beyond a If interface values a(n)
i and a(h)

i in Eqs. (4), (5) are elimi-
cell interface, and thus the time-average ai11 cannot be nated through Eqs. (7), (8), we will have a block-bidiagonal
calculated from the distribution of a over the neighbor system of linear equations which can be solved for ã(n)

i
cell. In this case, Fryxell et al. [15] introduced an extra and ã(h)

i . It has been shown [15] that the scheme is uncondi-
time level at t 5 Dt/2 (Fig. 1b). tionally stable for Courant numbers greater than unity.

For the first half time step, we have an equation similar Our purpose is to find an iterative approach for cell-
to Eq. (2): averages ã(n)

i (i 5 1, 2, ...). From an initial guess for interface
values a(n)

i and a(h)
i , a straightforward procedure is to calcu-

late cell-averages, ã(n)
i and ã(h)

i , through Eqs. (4), (5) fol-ã(h)
i 5 ai 2

cDt
2Dxi

(a(h)
i11 2 a(h)

i ). (3)
lowed by an improvement of the interface values through
Eqs. (7), (8). Unfortunately, numerical experiments show
that this iterative procedure does not converge when theHere ã(h)

i is the cell-average of a at t 5 Dt/2, and a(h)
i is

the time-average of a over the first half time step at x 5 Courant number is larger than unity. This is because that
the error in ã(n)

i is increased by a factor of the Courantxi . The time-averages, ai and a(h)
i , may be approximately

calculated through a linear interpolation in time. The linear number through each iteration for Eq. (3).
Our approach for the linear advection is as follows: Weinterpolation in uniquely determined by a(h)

i (;a(xi ,
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FIG. 6. The propagation of a sound wave: 200 cells in [0, 1]; Dt 5 0.005; 2 iterations. Dotted lines are initial profiles, and solid lines are the
profiles at t 5 0.5, 1.0, 1.5, and 2.0. The results show a smooth switch between explicit and implicit calculations.

eliminate ã(n)
i11 and ã(h)

i11 in Eqs. (4), (5) through Eqs. (7), (8) a(n)
i ; t (h)

i (2t (h)
i 2 1), b(n)

i ; 4t (h)
i (1 2 t (h)

i ), (11)
to obtain

a(h)
i ; ti(2ti 2 1), b(h)

i ; 4ti(1 2 ti). (12)

(1 1 sia
(h)
i )da(n)

i 1 sib
(h)
i da(h)

i 5 si(a(h)
i 2 ai), (9)

We initially guess interface values, a(n)
i and a(h)

i , and then
Afsi(3a(h)

i 2 a(n)
i )da(n)

i 1 [1 1 Afsi(3b(h)
i 2 b(n)

i )]da(h)
i calculate cell-averages ã(n)

i and ã(h)
i through solving Eqs.

(9), (10) for da(n)
i and da(h)

i . The interface values are im-5 Afsi(3a(h)
i 2 a(n)

i ) 2 Assiai . (10)
proved through Eqs. (7), (8) with the right hand side (RHS)
of Eqs. (7), (8) evaluated at the improved cell-averages.Here a(n)

i , b(n)
i , a(h)

i , and b(h)
i are defined as

FIG. 7. The sound wave (solid lines) after one time step Dt 5 0.1; 200 cells in [0, 1]; 6 iterations. The initial condition is shown by dotted lines.
Dashed lines are from an explicit scheme, which are overlapped by solid lines.
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FIG. 8. The sound wave (solid lines) after one time step Dt 5 0.2; 200 cells in [0, 1]; 10 iterations. The initial condition is shown by the dotted
lines. Dashed lines are from an explicit scheme.

One iteration consists of the two sets of calculations, one We implement a dynamical step in a Lagrangian coordi-
nate followed by an explicit mapping at the end of eachfor Eqs. (9), (10) and the other for Eqs. (7), (8). The

next iteration may be started from the improved interface dynamical step. Therefore we write the Euler equations
in a Lagrangian form:values. Numerical experiments show that this iterative pro-

cedure converges. We will show the convergence in the
next section.

V
t

5
u
m

, (16)

3. A SCHEME FOR HYDRODYNAMICS u
t

5 2
p
m

, (17)

The iterative procedure described in the last section can
be extended for use in the Euler equations. In this paper, E

t
5 2

uP
m

, (18)
we consider only the one-dimensional situation. We also
limit the discussion to the c-law for the equation of state,
although a more general equation of state can be accommo- where V is the specific volume (;1/r), and m is the mass
dated. The Euler equations are coordinate defined as dm ; r dx.

The differentials of Riemann invariants for two sound
waves have the formr

t
1



x
(ru) 5 0, (13)

dR6 ; dp 6 Cs du. (19)

t
(ru) 1



x
(ru2 1 p) 5 0, (14)

Here the plus (or minus) sign is for the wave propagating

t
(rE) 1



x
[u(rE 1 p)] 5 0. (15)

in the positive (or negative) x-direction, and Cs is the sound
speed in the mass coordinate. The sound speed in the space
coordinate, cs , may be obtained through dividing Cs by theHere r is the mass density, u is the flow velocity, p is the

pressure, E is the total specific energy defined as E ; e 1 mass density r.
Consider a numerical grid hxij and its corresponding gridu2/2 with e being the specific internal energy. The pressure

is related to the internal energy through the c-law p 5 in the mass coordinate hmij. Integrating Eqs. (16)–(18) in
a rectangular mi # m # mi11 and 0 # t # Dt, we have(c 2 1)re with c being the ratio of the specific heat capac-

ities. difference equations:
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change the structure of the iteration. As shown in Fig.
Ṽ(n)

i 5 Vi 1
Dt

Dmi
(ui11 2 ui), 2, u(h)

i11 and p(h)
i11 may be found through two characteristic

curves traced back from the point (xi11 , Dt/2) to the
centers of two neighbor cells, x(m)

i and x(m)
i11 , and, u(n)

i11ũ(n)
i 5 ui 2

Dt
Dmi

(pi11 2 pi),
and p(n)

i11 may be found through the other set of character-
istic curves traced back from the point (xi11 , Dt) to the

Ẽ(n)
i 5 Ei 2

Dt
Dmi

[(pu)i11 2 (pu)i]. centers. The time levels at the ends of the four characteris-
tic curves at the centers are t (h)

i Dt, ti Dt, t (h)
i11 Dt, and ti11

Dt. HereHere Dmi is the mass contained in the cell [xi , xi11].
We approximately calculate a time-average through a

linear interpolation of an interface value along time. The
t (h)

i ; 1 2
Dmi

2C(h)
si Dt

, ti ; 1
2 S1 2

Dmi

Csi DtD,linear interpolation is uniquely determined by interface
values at t 5 Dt/2 and Dt. Therefore the set of difference
equations above may be approximately written as and Csi (or C(h)

si ) is Cs evaluated at a cell-average and at
the initial time (or at t 5 Dt/2). For example, we may find
u(h)

i11 and p(h)
i11 through solving the following set of linearṼ(n)

i 5 Vi 1
Dt

Dmi
(u(h)

i11 2 u(h)
i ), (20)

equations:

ũ(n)
i 5 ui 2

Dt
Dmi

(p(h)
i11 2 p(h)

i ), (21)
p(h)

i11 2 p(x(m)
i , ti Dt)

1 wi11[u(h)
i11 2 u(x(m)

i , ti Dt)] 5 0, (26)
Ẽ(n)

i 5 Ei 2
Dt

Dmi
(u(h)

i11p
(h)
i11 2 u(h)

i p(h)
i ). (22)

p(h)
i11 2 p(x(m)

i11 , ti11 Dt) 2 wi11[u(h)
i11

Here we have treated the time-average of a product of 2 u(x(m)
i11 , ti11 Dt)] 5 0. (27)

two variables approximately as the product of two time-
averages. This approximation is accurate to second order Here wi11 ; (Csi 1 Csi11)/2.
in time. Similarly, the cell-averages after a half time step A cell-average of a variable, a, at any time t [ [0, Dt]
may be written as may be found through a parabola in time. The parabola

is uniquely determined by the cell-averages at t 5 0,
Dt/2, and Dt. For example, u(x(m)

i , t (h)
i Dt) andṼ(h)

i 5 Vi 1
Dt

2 Dmi
F3

2
u(h)

i11 2
1
2

u(n)
i11 u(x(m)

i , ti Dt) are found to be

u(x(m)
i , t (h)

i Dt) 5 ui 1 (2du(n)
i 1 4du(h)

i )t (h)
i2 S3

2
u(h)

i 2
1
2

u(n)
i DG, (23)

1 (2du(n)
i 2 4du(h)

i )(t (h)
i )2, (28)

ũ(h)
i 5 ui 2

Dt
2 Dmi

F3
2

p(h)
i11 2

1
2

p(n)
i11 u(x(m)

i , ti Dt) 5 ui 1 (2du(n)
i 1 4du(h)

i )ti

1 (2 du(n)
i 2 4 du(h)

i )t 2
i . (29)

2 S3
2

p(h)
i 2

1
2

p(n)
i DG, (24)

These two formulations are also valid for p(x(m)
i , t (h)

i Dt)
and p(x(m)

i , ti Dt) if u is replaced by p.
Ẽ(h)

i 5 Ei 2
Dt

2 Dmi
FS3

2
u(h)

i11 2
1
2

u(n)
i11DS3

2
p(h)

i11 2
1
2

p(n)
i11D Solving both Riemann problems and using Eqs. (28),

(29), we may write interface values in terms of cell-
averages:

2 S3
2

u(h)
i 2

1
2

u(n)
i DS3

2
p(h)

i 2
1
2

p(n)
i DG. (25)

u(n)
i11 5 As[ui11 1 ui 2 (pi11 2 pi)/w(h)

i11]
3.1. Iterative Approach

1 As[a(n)
i11 du(n)

i11 1 b(n)
i11 du(h)

i11 2 (a(n)
i11 dp(n)

i11
Our purpose in this subsection is to develop an iterative

1 b(n)
i11 dp(h)

i11)/w(h)
i11]approach to find interface values, u(h)

i and p(h)
i , which are

needed in Eqs. (20)–(22). For the purpose, we use a Rie- 1 As[a(n)
i du(n)

i 1 b(n)
i du(h)

i 1 (a(n)
i dp(n)

i
mann solver, which is based on the characteristic formula-

1 b(n)
i dp(h)

i )/w(h)
i11], (30)tion, Eq. (19). Incorporating a Riemann solver does not
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FIG. 9. The sound wave (solid lines) after one time step Dt 5 0.4; 200 cells in [0, 1]; 14 iterations. The initial condition is shown by dotted lines.
Dashed lines are from an explicit scheme.

p(n)
i11 5 As[pi11 1 pi 2 w(h)

i11(ui11 2 ui)] Here S(vn)
i , f (pn)

i , and f (ph)
i are defined in Eqs. (48), (49) in

the Appendix. From Eq. (21), we have
1 As[a(n)

i11 dp(n)
i11 1 b(n)

i11 dp(h)
i11 2 w(h)

i11(a(n)
i11 du(n)

i11

1 b(n)
i11 du(h)

i11)] du(n)
i 5 2S(un)

i 2 a(un)
i du(n)

i 2 a(uh)
i du(h)

i . (35)

1 As[a(n)
i dp(n)

i 1 b(n)
i dp(h)

i 1 w(h)
i11(a(n)

i du(n)
i

Here S(un)
i , a(un)

i , and a(uh)
i are defined in Eqs. (50), (51) in

1 b(n)
i du(h)

i )], (31) the Appendix. We write the nonlinear terms at the RHS
of Eq. (22) asu(h)

i11 5 As[ui11 1 ui 2 (pi11 2 pi)/wi11]

1 As[a(h)
i11 du(n)

i11 1 b(h)
i11 du(h)

i11 2 (a(h)
i11 dp(n)

i11 u(h)
i11p

(h)
i11 2 u(h)

i p(h)
i 5 u(h)

i11(p(h)
i11 2 p(h)

i ) 1 p(h)
i (u(h)

i11 2 u(h)
i ),

1 b(h)
i11 dp(h)

i11)/wi11]
and substitute Eqs. (32), (33) into the equation above for

1 As[a(h)
i du(n)

i 1 b(h)
i du(h)

i (p(h)
i11 2 p(h)

i ) and (u(h)
i11 2 u(h)

i ) to have
1 (a(h)

i dp(n)
i 1 b(h)

i dp(h)
i )/wi11], (32)

dE(n)
i 5 2S(en)

i 2 b(un)
i du(n)

i 2 b(uh)
i du(h)

i
(36)p(h)

i11 5 As[pi11 1 pi 2 wi11(ui11 2 ui)]
2 b(pn)

i dp(n)
i 2 b(ph)

i dp(h)
i .

1 As[a(h)
i11 dp(n)

i11 1 b(h)
i11 dp(h)

i11 2 wi11(a(h)
i11 du(n)

i11

1 b(h)
i11 du(h)

i11)] Here b(un)
i , b(uh)

i , b(pn)
i , and b(ph)

i are given in Eqs. (52), (53)
in the Appendix, and1 As[a(h)

i dp(n)
i 1 b(h)

i dp(h)
i 1 wi11(a(h)

i du(n)
i

1 b(h)
i du(h)

i )]. (33) S(en)
i ; u(h)

i11S
(un)
i 1 p(h)

i S(vn)
i . (37)

Here a(n)
i , b(n)

i , a(h)
i , and b(h)

i are defined in Eqs. (11), (12)
From Eqs. (34)–(36) and the relation

in terms of t (h)
i and ti , and w(h)

i 5 (C(h)
si 1 C(h)

si11)/2.
We substitute Eqs. (30)–(33) into Eqs. (20)–(25) for

dp(n)
i 5 2rip̃

(n)
i dV(n)

i 2 As(c 2 1)ri(ũ(n)
i 1 ui) du(n)

iu(n)
i11 , p(n)

i11 , u(h)
i11 , p(h)

i11 , u(n)
i , p(n)

i , u(h)
i , and p(h)

i . After straight-
1 (c 2 1)ri dE(n)

i ,forward algebra manipulations, from Eq. (20) we have

dV(n)
i 5 S(vn)

i 1 f (pn)
i dp(n)

i 1 f (ph)
i dp(h)

i . (34) dp(n)
i may be written as
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FIG. 10. The sound wave (solid lines) after one time step Dt 5 0.8; 200 cells in [0, 1]; 22 iterations. The initial condition is shown by dotted
lines. Dashed lines are from an explicit scheme.

dp(n)
i 5 S(pn)

i 1 d(un)
i du(n)

i 1 d(uh)
i du(h)

i (38) du(n)
i , du(h)

i , dp(n)
i , and dp(h)

i with the coefficients and S-
terms in Eqs. (41)–(44) evaluated at the initial guess. Thus

1 d(pn)
i dp(n)

i 1 d(ph)
i dp(h)

i . we are solving two sets of two linear equations. After this,
we substitute the improved cell-averages, ũ(h)

i , p̃(h)
i , ũ(n)

i ,
Here S(pn)

i , d(un)
i , d(uh)

i , d(pn)
i , and d(ph)

i are defined in Eqs. and p̃(n)
i , into the RHS of Eqs. (30)–(33) to improve inter-

(54)–(57) in the Appendix. face values, u(h)
i , p(h)

i , u(n)
i , and p(n)

i . One iteration consists
Similarly, from Eqs. (23)–(25), (30)–(33), we have of the two sets of calculations, one for Eqs. (41)–(44) and

the other for Eqs. (30)–(33). The next iteration may be
du(h)

i 5 2S(uh)
i 2 g(un)

i du(n)
i 2 g(uh)

i du(h)
i , (39) started with the improved cell-averages and interface val-

ues if necessary. Numerical experiments show that thedp(h)
i 5 S(ph)

i 1 u(un)
i du(n)

i iterative procedure converges. We call this iterative ap-
1 u(uh)

i du(h)
i 1 u(pn)

i dp(n)
i 1 u(ph)

i dp(h)
i . (40) proach A1 .

For the calculation of interface values in this implicit–
explicit hybrid scheme, a wave propagating in each direc-Here S(uh)

i , g(un)
i , g(uh)

i , S(ph)
i , u(un)

i , u(uh)
i , u(pn)

i , and u(ph)
i are

tion may be either implicitly or explicitly treated dependinggiven in Eqs. (58)–(64) in the Appendix.
on the Courant number associated with the wave in eachFinally, we write Eqs. (35), (38)–(40) in the form:
cell. For example, if csiDt/Dxi is less than unity, then
p(x(m)

i , ti Dt) and u(x(m)
i , ti Dt) in Eqs. (26), (27) are calcu-2(1 1 a(un)

i ) du(n)
i 2 a(uh)

i du(h)
i 5 S(un)

i , (41)
lated from domain-averages for the wave propagating to

2g(un)
i du(n)

i 2 (1 1 g(uh)
i ) du(h)

i 5 S(uh)
i , (42) the positive x-direction.

2d(un)
i du(n)

i 2 d(uh)
i du(h)

i 1 (1 2 d(pn)
i ) dp(n)

i 3.2. Multicolors and Convergence of Iterations
2 d(ph)

i dp(h)
i 5 S(pn)

i , (43) Now we discuss the speed of convergence. We choose
a nonlinear wave as an example. The initial wave is set up2u(un)

i du(n)
i 2 u(uh)

i du(h)
i 2 u(pn)

i dp(n)
i

through differentials of Riemann invariants,
1 (1 2 u(ph)

i ) dp(h)
i 5 S(ph)

i . (44)

R1

x
5 0.4 sin(2fx), (45)One iterative procedure for interface values is as follows.

Initially, we guess both cell-averages, ũ(h)
i , p̃(h)

i , ũ(n)
i , and

p̃(n)
i , and interface values, u(h)

i , p(h)
i , u(n)

i , and p(n)
i . Then we R2

x
5

R0

x
5 0, (46)

improve cell-averages through solving Eqs. (41)–(44) for
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FIG. 11. The sound wave (solid lines) after one time step Dt 5 1.6; 200 cells in [0, 1]; 40 iterations. The initial condition is shown by dotted
lines. Dashed lines are from an explicit scheme.

and r(0, 0) 5 r0 (;Gd) and p(0, 0) 5 p0 (51). Here R0 ; each iteration. We call the approach A2 . The result ob-
tained from A2 is shown by the solid line indicated bypVc. We measure the convergence by the difference be-

tween the converged solution and the solution from k 5 2 in Fig. 3.
To further develop the strategy, we divide all numericaleach iteration:

cells into k (.2) groups Gl (l 5 1, 2, ..., k), i.e., k different
colors, and the lth group contains cells hi; i 5 ( j 2 1)k 1

«1d 5
1
L ON

i51
Dx(n)

i F 1
p0
U p(n)

i 2 p(n)
i,p U1

1
c0
U u(n)

i 2 u(n)
i,p UG l, j 5 1, 2, ...j. For example, when k 5 4, the four groups

Gl (l 5 1, 2, 3, 4) are hi 5 1, 5, 9, ...j, hi 5 2, 6, 10, ...j,
hi 5 3, 7, 11, ...j, and hi 5 4, 8, 12, ...j. An iteration consists

1
1
L ON

i51
Dx(h)

i F 1
p0
U p(h)

i 2 p(h)
i,p U1

1
c0
U u(h)

i 2 u(h)
i,p U G. of the implementation of Eqs. (41)–(44) for groups G1 ,

G2 , ..., Gk (or Gk , Gk21 , ..., G1) followed by another itera-
tion with the opposite order, i.e., from Gk to G1 (or from

Here L (51) is the wavelength, the subscript p stands for G1 to Gk). We call the approach Ak . Results obtained from
the converged solution, and Dx(n)

i and Dx(h)
i are the widths A6 , A10 , A20 , A50 , and A100 are given by the solid lines

of the ith cell in the Lagrangian coordinate at t 5 Dt and indicated by k 5 6, 10, 20, 50, and 100 in Fig. 3. Generally,
Dt/2. Figure 3 shows the convergence when a uniform grid an approach Ak with a larger k will result in a faster conver-
with N 5 200 cells in a wavelength and a time step 0.2 are gence since information may travel k cells through each
used. csi Dt/Dxi P 40. The dotted line in Fig. 3 shows the iteration in the approach Ak . We have to mention that
relation between «1d and the number of iterations obtained since information is carried by sound waves propagating
from the approach A1 . Many iterations are needed for a in two directions, the change in the order to implement
reasonably accurate interface values (e.g., «1d 5 1025), since Eqs. (41)–(44) for groups Gl (l 5 1, 2, ..., k) is necessary
information travels only one numerical cell through each for the improvement.
iteration in the approach A1 . The advantage of the implicit–explicit scheme becomes

To improve the speed of convergence, we divide all more obvious if it is used in a very fine mesh. Figure 4
numerical cells into two sets: hi; i 5 2j 1 1, j 5 0, 1, 2, ...j shows the convergence when a uniform grid with N 5 2000
and hi; i 5 2j, j 5 1, 2, ...j, which are called red and black in a wavelength and a time step 0.2 are used. Courant
sets. Equations (41)–(44) are first implemented for the red numbers are around 400, and the wave travels about one-
set of cells followed by an evaluation of the S-terms in fifth of its wavelength during the time step. The number
Eqs. (41)–(44), and then Eqs. (41)–(44) are implemented of iterations required to reach a converged solution is re-
for the other set of cells. This approach converges more duced by several orders by the introduction of the

multicolors.rapidly than A1 since information travels two cells through
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FIG. 12. A shock-tube problem: Dt 5 0.0035; 200 cells in [0, 1]; 5 iterations. Initially, (r, p, ux) is equal to (1, 1, 21.45) for x . 0.5 and is equal
to (2.2, 1.3, 0.88) for x , 0.5, as shown by dotted lines. Solid lines are the profiles at t 5 0.3, which contain two shocks and a contact discontinuity.

There are two points we would like to mention here. find the integral of a(x) over the domain [s0 , s1] which is
a part of a cell [x(l)

j , x(l)
j11], as shown in Fig. 5. Cubic polyno-First, we do not have to find converged interface values

in the scheme. Only approximate interface values are mials are used to interpolate a conserved quantity a in
order to find values at interfaces of numerical cells in theneeded in Eqs. (20)–(22). The number of iterations used

in the numerical examples to be presented in the paper Lagrangian grid. From a parabolic interpolation uniquely
determined by the cell-average aj and values at the leftonly guarantees the error «1d less than 1024. After we find

the approximate solutions for interface values, we use Eqs. and right interfaces, al and ar , the integral is found to be
(20)–(22) to update conserved quantities. Therefore, the
mass, momentum, and energy are exactly conserved in Es1

s0

a(x) dx 5 (s1 2 s0)Fal 1
1
2

(âj 1 ar 2 al)(jj 1 zj)

(47)
the scheme. Second, the coefficients in Eqs. (41)–(44) are
evaluated only once in each iteration. Thus the use of
the multicolors does not involve more calculations than a

2
1
3

âj(j 2
j 1 jjzj 1 z2

j )G.single color.

3.3. Mapping from Lagrangian to Eulerian Grids
Here

The values of conserved quantities in the original Eu-
lerian grid are obtained through mapping from the Lagran-

jj ;
s1 2 x(l)

j

x(l)
j11 2 x(l)

j

, zj ;
s0 2 x(l)

j

x(l)
j11 2 x(l)

j

,gian grid to the Eulerian grid. The mapping is only a trans-
formation between two grids. In the mapping, the mass,

âj ; 6aj 2 3(al 1 ar).momentum, and energy should be conserved. Consider the
Lagrangian and Eulerian grids denoted by hx(l)

i j and hxij,
respectively. For the mapping, we have to find the intergral In the mapping, either s1 or s0 is an interface of cells.
of a(x) over the cell [xi , xi11] of the Eulerian grid. The
cell-average of a over the cell is the integral divided by 4. NUMERICAL EXAMPLES
the cell width. Note that a cell in the Eulerian grid, [xi ,
xi11], may extend over several cells in the Lagrangian grid. The scheme has been tested for numerical examples,

some of which will be presented here to illustrate the prop-The contribution of a cell in the Lagrangian grid, which is
completely overlapped by the domain [xi , xi11], to the inte- erties of the scheme. Calculations with different numbers

of colors may result in equally accurate interface values.gral is simply the cell-average multiplied by the width of
the cell. For those cells in the Lagrangian grid which are Therefore, solutions from simulations with different num-

bers of colors are the same. Here we present only thepartially overlapped by the domain [xi , xi11], we have to
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results from the approach A50 . The value for c is set to Gd. to other linear and nonlinear wave equations for numeri-
cal solutions.A uniform grid with 200 cells is used. Calculations are

performed for different time steps which show how the Finally, we would like to discuss shock-tube problems
and performance of the scheme. We do not recommendscheme treats waves with different wavelengths.

The first example is the propagation of a sound wave the use of an implicit scheme for shock-tube problems.
If discontinuities have to be resolved in some part of ainitially determined by Eqs. (45), (46) with a shifted flow

velocity ux . The initial condition is shown by the dotted simulation domain, sizes of time steps should be restricted
so that Courant numbers remain around or less than unitylines in Fig. 6. The time step is 0.005. At each time step,

the sound wave is partially implicitly and partially explicitly in that part of the domain. Figure 12 shows a solution
obtained from the implicit–explicit hybrid scheme for acalculated. The solid lines in Fig. 6 are the profiles at t 5

0.5, 1.0, 1.5, and 2.0. The results show a smooth switch shock tube problem which involves two shocks and a con-
tact discontinuity. Our current computer code for thebetween explicit and implicit calculations.

Figs. 7–11 show the profiles of the wave after one time scheme shows that the computations needed for each itera-
tion in one time step are about 50% of those needed instep when different time steps are used. The dashed lines

in Figs. 7–11 are references obtained from an explicit one time step of an equivalent explicit scheme, such as
PPM. Thus the computations needed for one time step ofscheme (the PPM) with Courant numbers around 0.8. As

shown in Fig. 7, when cs Dt/Dx P 20, it is hard to see the hybrid scheme with 10 iterations are about six times
of the computations needed in one time step of the explicitthe difference between the implicit and explicit schemes.

Figure 8 shows the difference when the time step is in- scheme, and the computations needed in one time step of
the hybrid scheme with 20 iterations are about 11 timescreased to Dt P 40 Dx/cs . The wave is significantly damped

in Fig. 9 when the time step is increased to Dt P 80 Dx/ of the computations needed in one time step of the ex-
plicit scheme.cs . If Courant numbers are larger than the number of

numerical cells in one wavelength, the profiles after one
time step are close to constant states. If the time step is
very large, an approximately steady state may be reached. APPENDIX

In this appendix, we list some definitions used in this5. CONCLUSIONS AND DISCUSSIONS
paper. S(vn)

i , f (pn)
i and f (ph)

i in Eq. (35) are defined as
We have developed an iterative approach for the im-

plicit–explicit hybrid scheme proposed by Fryxell et al. [15]
for the one-dimensional Euler equations. The scheme is S(vn)

i ; Dt
2 Dmi

Fũi11 2 ui21 2
1

wi11
(pi11 2 pi)

of Godunov-type, is in a strictly conservative form, is accu-
rate to second order in both space and time for all Courant
numbers, is able to smoothly switch between implicit and 1

1
wi

(pi 2 pi21)G
explicit calculations, and keeps the advantages of Godunov
schemes. The scheme has advantages for those problems

2
Dt

2 Dmi
Fa(h)

i21 du(n)
i21 1 b(h)

i21 du(h)
i21in which the time accuracy is important at least in some

part of a simulation domain.
The iterative approach proposed in this paper involves

1
1
wi

(a(h)
i21 dp(n)

i21 1 b(h)
i21 dp(h)

i21Gonly a single level of iterations, which solve both the im-
plicit relations arising from upstream centered differences
for all wave families and the nonlinearity of the Euler

1
Dt

2 Dmi
a(h)

i11 du(n)
i11 1 b(h)

i11 du(h)
i11equations. Compared with large Courant numbers in a

simulation with large time steps, only a small number of
iterations are needed for the flux calculation in the scheme. 2

1
wi11

(a(h)
i11 dp(n)

i11 1 b(h)
i11 dp(h)

i11)G, (48)
The multicolors proposed in this paper further develop
the red–black strategy. Information travels two cells
through each iteration in the red–black approach. Informa- f (pn)

i21 ; Dt
2 Dmi

a(h)
i S 1

wi11
1

1
wi
D,

tion may travel k cells through one iteration in the ap-
proach Ak proposed in this paper, where k may be any
reasonable number between 2 and the number of cells. f (ph)

i ; Dt
2 Dmi

b(h)
i S 1

wi11
1

1
wi
D. (49)

The number of iterations required to reach a converged
solution may be significantly reduced through the introduc-
tion of the multicolors. The multicolors may also be applied S(un)

i , a(un)
i , and a(uh)

i in Eq. (35) are defined as
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S(un)
i ; Dt

2 Dmi
[pi11 2 pi21 1 wi(ui 2 ui21) g(un)

i ; Dt
2 Dmi

(n(un)
i 2 q(un)

i ), g(uh)
i ; Dt

2 Dmi
(n(uh)

i 2 q(uh)
i ).

2 wi11(ui11 2 ui)] (59)

2
Dt

2 Dmi
[a(h)

i21 dp(n)
i21 1 b(h)

i21 dp(h)
i21 Here

1 wi(a(h)
i21 du(n)

i21 1 b(h)
i21 du(h)

i21)]
g(un)

i ; Af(3a(h)
i 2 a(n)

i ), g(uh)
i ; Af(3bh)

i 2 b(n)
i ),

q(un)
i ; Af(w(h)

i a(n)
i 2 3wia

(h)
i ), q(uh)

i ; Af(w(h)
i b(n)

i 2 3wib
(h)
i ),1

Dt
2 Dmi

[a(h)
i11 dp(n)

i11 1 b(h)
i11 dp(h)

i11

n(un)
i ; Af(3wi11a

(h)
i 2 w(h)

i11a
(n)
i , n(uh)

i ; Af(3wi11b(h)
i 2 w(h)

i11b(n)
i ).

2 wi11(a(h)
i11 du(n)

i11 1 b(h)
i11 du(h)

i11)], (50)

S(ph)
i , u(un)

i , u(uh)
i , u(pn)

i , and u(ph)
i in Eq. (40) are defined asa(un)

i ; Dt
2 Dmi

a(h)
i (wi 1 wi11),

S(ph)
i ; 2rir̃

(h)
i S(vh)

i 1 Asri(ũ(h)
i 1 ũi)S(uh)

ia(uh)
i ; Dt

2 Dmi
b(h)

i (wi 1 wi11). (51)
2 (c 2 1)riS

(eh)
i , (60)

b(un)
i , b(uh)

i , b(pn)
i , and b(ph)

i in Eq. (36) are defined as u(un)
i ; As(c 2 1)ri(ũ(h)

i 1 ui)g(un)
i 2 (c 2 1)rih

(un)
i , (61)

u(uh)
i ; As(c 2 1)ri(ũ(h)

i 1 ui)g(uh)
i 2 (c 2 1)rih

(uh)
i , (62)

b(un)
i ; u(h)

i11a
(un)
i , b(uh)

i ; u(h)
i11a

(uh)
i , (52)

u(pn)
i ; 2

Dt
2 Dmi

rip̃
(h)
i (e(pn)

i 2 g(pn)
i ) 2 (c 2 1)rih

(pn)
i , (63)

b(pn)
i ; p(h)

i f (pn)
i , b(ph)

i ; p(h)
i f (ph)

i , (53)
u(ph)

i ; 2
Dt

2 Dmi
rip̃

(h)
i (e(ph)

i 2g(ph)
i ) 2 (c 2 1)rih

(ph)
i , (64)

S(pn)
i , d(un)

i , d(uh)
i , d(pn)

i , and d(ph)
i in Eq. (38) are defined as

Here
S(pn)

i ; 2ri p̃
(n)
i S(vn)

i 1 As (c 2 1) ri(ũ(n)
i 1 ui)S(un)

i (54)

2 (c 2 1)riS
(en)
i , (55)

S(vh)
i ; Dt

2 Dmi
F1

2
(ui11 2 ui21) 1

1
4

(pi 2 pi21)S 3
wi

2
1

w(h)
i
D

d(un)
i ; As(c 2 1)ri(ũ(n)

i 1 ui)a(un)
i 2 (c 2 1)rib

(un)
i , (56)

2
1
4

(pi11 2 pi) S 3
wi11

2
1

w(h)
i11
DG1

Dt
2 Dmi

[g(un)
i11 du(n)

i11d(uh)
i ; As(c 2 1)ri(ũ(n)

i 1 ui)a(uh)
i 2 (c 2 1)rib

(uh)
i ,

d(pn)
i ; 2rip̃

(n)
i f (pn)

i 2 (c 2 1)rib
(pn)
i , 1 g(uh)

i11 du(h)
i11 1 g(pn)

i11 dp(n)
i11 1 g(ph)

i11 dp(h)
i11]

d(ph)
i ; 2rip̃

(n)
i f (ph)

i 2 (c 2 1)rib
(ph)
i . (57)

2
Dt

2 Dmi
[g(un)

i21 du(n)
i211 g(uh)

i21 du(h)
i21

S(uh)
i , g(un)

i , and g(uh)
i in Eq. (39) are defined as 1 e(pn)

i21 dp(n)
i21 1 e(ph)

i21 dp(h)
i21],

S(eh)
i ; S3

2
p(h)

i11 2
1
2

p(n)
i11D S(vh)

i 1 S3
2

u(h)
i 2

1
2

u(n)
i D S(uh)

iS(uh)
i ; Dt

2 Dmi
F1

2
(pi11 2 pi21) 1

1
4

(ui 2 ui21)(3wi 2 w(h)
i )

g(pn)
i ; 1

4 Sa(n)
i

w(h)
i

2
3a(h)

i

wi
D, g(ph)

i ; 1
4 Sb(n)

i

w(h)
i

2
3b(h)

i

wi
D,2

1
4

(ui11 2 ui)(3wi11 2 w(h)
i11)G

e(pn)
i ; 1

4 S3a(h)
i

wi11
2

a(n)
i

w(h)
i11
D, e(ph)

i ; 1
4 S3b(h)

i

wi11
2

b(n)
i

w(h)
i11
D,1

Dt
2 Dmi

[g(un)
i11 dp(n)

i11 1 g(uh)
i11 dp(h)

i11 1 q(un)
i11 du(n)

i11

1 q(uh)
i11 du(h)

i11]
h(un)

i ; S3
2

u(h)
i 2

1
2

u(n)
i D g(un)

i ,

2
Dt

2 Dmi
[g(un)

i21 dp(n)
i21 1 g(uh)

i21 dp(h)
i21 1 n(un)

i21 du(n)
i21

h(uh)
i ; S3

2
u(h)

i 2
1
2

u(n)
i D g(uh)

i ,
1 n(uh)

i21 du(h)
i21], (58)
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